
Baby Steps are Slow

Terminology: Given any array A of n data values,
we will say that a pair is any two entries (A[i],
A[j]) with i < j. We say that a pair (A[i], A[j]) is
inverted if A[i] > A[j].

Note that with n data values there are n(n-1)/2
pairs: A[0] is paired with (n-1) entries, A[1] is
paired with (n-2) entries and so forth. The
numbers

(n-1) + (n-2) + ... + 1

sum to

n(n-1)/2

Now, suppose we start with n distinct data
values. Think of all of the different ways we
could order them. Each ordering has a reversal
(just put the data in the opposite order). A pair
that is not inverted in one of these orderings is
inverted in its reversal. If we sum the inversions
in any ordering and in its reversal we get

n(n-1)/2 because each pair is inverted in one of
the two orderings.

This means the average number of inversions
over all possible orderings is n(n-1)/4.

Theorem: Any sorting algorithm that sorts by
interchanging adjacent data elements
(BubbleSort, InsertionSort) or that moves an
element k places only after doing k comparisons
has an average-case running time at least W(n2).

Proof: A data interchange of adjacent elements
will correct only one inversion, and on average
there are n(n-1)/4 inversions to correct. An
interchange of elements k steps apart corrects
at most k inversions.

Moral: If we want to do better than O(n2) in
sorting, we need to find better ways to move the
data around. One step per comparison won't do
the trick.

Moral: One step per comparison is the only
option for sorting linked lists in place, so sorting a
linked list as a linked list is inherently O(n2). If you
have a large linked list it would be faster to copy
the data into an array, sort the array efficiently,
and copy the data back into the linked list.

