Baby Steps are Slow

Terminology: Given any array A of n data values, we will say that a pair is any two entries (A[i], $A[j])$ with $i<j$. We say that a pair ($A[i], A[j])$ is inverted if $A[i]>A[j]$.

Note that with n data values there are $n(n-1) / 2$ pairs: $A[0]$ is paired with ($n-1$) entries, $A[1]$ is paired with ($n-2$) entries and so forth. The numbers

$$
(n-1)+(n-2)+\ldots+1
$$

sum to

$$
n(n-1) / 2
$$

Now, suppose we start with n distinct data values. Think of all of the different ways we could order them. Each ordering has a reversal (just put the data in the opposite order). A pair that is not inverted in one of these orderings is inverted in its reversal. If we sum the inversions in any ordering and in its reversal we get $n(n-1) / 2$ because each pair is inverted in one of the two orderings.
This means the average number of inversions over all possible orderings is $n(n-1) / 4$.

Theorem: Any sorting algorithm that sorts by interchanging adjacent data elements (BubbleSort, InsertionSort) or that moves an element k places only after doing k comparisons has an average-case running time at least $\Omega\left(n^{2}\right)$. Proof: A data interchange of adjacent elements will correct only one inversion, and on average there are $n(n-1) / 4$ inversions to correct. An interchange of elements k steps apart corrects at most k inversions.

Moral: If we want to do better than $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in sorting, we need to find better ways to move the data around. One step per comparison won't do the trick.

Moral: One step per comparison is the only option for sorting linked lists in place, so sorting a linked list as a linked list is inherently $\mathrm{O}\left(\mathrm{n}^{2}\right)$. If you have a large linked list it would be faster to copy the data into an array, sort the array efficiently, and copy the data back into the linked list.

