
Baby Steps are Slow



Terminology: Given any array A of n data values, 
we will say that a pair is any two entries (A[i], 
A[j]) with i < j.  We say that a pair (A[i], A[j]) is 
inverted if A[i] > A[j].



Note that with n data values there are n(n-1)/2 
pairs:  A[0] is paired with (n-1) entries, A[1] is 
paired with (n-2) entries and so forth.  The 
numbers

(n-1) + (n-2) + ... + 1 

sum to 

n(n-1)/2



Now, suppose we start with n distinct data 
values.  Think of all of the different ways we 
could order them.  Each ordering has a reversal 
(just put the data in the opposite order).  A pair 
that is not inverted in one of these orderings is 
inverted in its reversal.  If we sum the inversions 
in any ordering and in its reversal we get 

n(n-1)/2 because each pair is inverted in one of 
the two orderings.

This means the average number of inversions 
over all possible orderings  is n(n-1)/4.  



Theorem: Any sorting algorithm that sorts by 
interchanging adjacent data elements 
(BubbleSort, InsertionSort) or that moves an 
element k places only after doing k comparisons 
has an average-case running time at least W( n2).

Proof: A data interchange of adjacent elements 
will correct only one inversion, and on average 
there are n(n-1)/4 inversions to correct.   An 
interchange of elements k steps apart corrects 
at most k inversions.



Moral:  If we want to do better than O(n2) in 
sorting, we need to find better ways to move the 
data around.  One step per comparison won't do 
the trick.

Moral: One step per comparison is the only 
option for sorting linked lists in place, so sorting a 
linked list as a linked list is inherently O(n2).  If you 
have a large linked list it would be faster to copy 
the data into an array, sort the array efficiently, 
and copy the data back into the linked list.


